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Background
▶ Neural network based deep learning methods obtain great succsss in almost

all NLP tasks.
基于神经网络的深度学习方法在几乎所有NLP任务中都取得了重大成功。

▶ But in many real industrial applications, rule-based methods are still
unavoidable because:
但在很多真实的工业级应用中，基于规则的方法仍然是无可取代的，因为：
▶ NNs are not interpretable, thus not reliable.
神经网络无法解释，因而不可信赖。

▶ NNs are not controlable. Users are not able to change the behaviour of NNs
according to their expertise.
神经网络无法控制。用户无法根据自己的专家经验去改变神经网络的行为。

▶ Rule-based systems have their own shortcomings:
基于规则的系统有自身的缺点：
▶ Low coverage. 覆盖率低。
▶ Low efficiency. 执行效率低。
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Our work

▶ Our methods: 我们的方法：
▶ Integrate rules into neural networks. 将规则融入神经网络。
▶ Convert rule-based systems to neural networks. 将规则系统编程神经网络系统。
▶ Execute rules via neural networks. 通过神经网络来执行规则。

▶ More specifically, we proposed methods to integrate the following three types
of rules into neural networks:
具体来说，我们提出不同方法，将以下三种形式的规则融入到神经网络中：
▶ large-scale dictionaries. 大规模词典。
▶ regular expressions. 正则表达式。
▶ context-free rules. 上下文无关规则。
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Background
Background

• Lexicons are very important

Please open the IronMan

IronMan may be an app, a device, or a video

which your smart assistant haven’t seen

play Just a Little While Longer now on IronMan

Your smart assistant can’t distinguish whether 

Just a Little While Longer is a song name or a movie name 
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BackgroundBackground
Previous method

Feature based

Zhang, Qi, Xiaoyu Liu, and Jinlan Fu. "Neural networks incorporating 

dictionaries for chinese word segmentation." Thirty-Second AAAI 

Conference on Artificial Intelligence. 2018.

Lattice based Graph based

Zhang, Yue, and Jie Yang. "Chinese ner using lattice lstm." arXiv 

preprint arXiv:1805.02023 (2018).

Ding, Ruixue, et al. "A neural multi-digraph model for Chinese 

NER with gazetteers." Proceedings of the 57th Annual Meeting of 

the Association for Computational Linguistics. 2019.

Weakness
• Some depends on word embedding • Ignore the category of words • No explicit disambiguation
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DyLex: Incorporating Dynamic Lexicons into BERT for Sequence Labeling
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Figure 2: (a) The overall architecture of the proposed DyLex framework, it consists of two parts, namely BERT-
based sequence tagger and LexKg Extractor. The Extractor has three submodules: the Matching, the Denoising
and the Fusing. (b) A concrete example of lexicon matching and denoising.

produces multiple word-agnostic tag sequences.
Figure 2 (b) shows a concrete example.

To be detailed, we use the prefix Trie tree (Brass,
2008) to store and retrieve the lexicons. The non-
leaf nodes of Trie are made up of word-pieces of
lexicon words tokenized by BERT tokenizer, while
the leaf nodes are made up by the types of the lex-
icon words, namely tag name (e.g. ‘B-song’ and
‘I-song’ as shown in Figure 2 (b)). For each sub-
sequence of the input, the Trie may match several
different candidates. Every single match can be
categorized by a tag attached with a leaf node, the
rest of the sequence will be filled with ‘O’ tags.

Formally, we denote the input sequence as U .
A tag sequence obtained by fast matching is T (i),
and superscript i represents the index of the tag
sequence. The Matching submodule can be formal-
ized as:

Eu = BERT(U) (3)

E
(i)
t = Embedding(T (i)) (4)

E
(i)
d = E

(i)
t + Eu, (5)

where Eu ∈ Rl×hz (here l is sequence length and
hz is hidden size) is the representation produced
by BERT encoder, E(i)

t ∈ Rl×hz represents the
embedding of i-th tag sequence, and E

(i)
d ∈ Rl×hz

is the corresponding output of this module.

Denoising The proposed fast matching algorithm
can quickly obtain all potential matched sub-
sequences with the lexicons. However, due to the
large scale size of the lexicon, even for an input

sequence with only a few words, there may be
dozens of incorrect matches. Using Figure 2 (b)
as an example, only Row 2 (i.e. the matching to
singer Taylor Swift’s) and Row 3 (i.e. the match-
ing to song Sparks Fly) are expected matchings,
whereas all the other tag sequences contain incor-
rect matchings, namely the matching nosie men-
tioned in this work, which will inevitably decrease
final performance. Thus we devise a novel super-
vised knowledge denoising module to smooth them
out.

The supervising signal can be automatically
derived from the golden sequence labels of the
training dataset. In the example of Figure 2 (b),
each row corresponds to a single matching tag se-
quences, and Row 2 and Row 3 are used as positive
training samples whereas negative for the other
two. Note that, our method can still work even if
the category of lexicon (e.g. name or song) is not
provided, in that case, a tag sequence degenerates
to mark out a lexicon word boundary.

Formally, we first get the representation of i-th
tag sequence from its embedding E

(i)
d with self-

attention

R
(i)
d = SelfAtt(E

(i)
d ). (6)

When classifying each tag sequence, we also need
to consider relationships among them. For example,
Row 3 and Row 4 in Figure 2 (b) can not be True
at the same time since they share some contradict-
ing spans. Taking that into consideration, we first
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DyLex: Incorporating Dynamic Lexicons into BERT for Sequence Labeling

▶ We propose a general framework for effectively introducing external lexical
knowledge into sequence labeling tasks.

▶ Our framework supports dynamic updates of lexicons to facilitate industrial
deployment.
▶ We use word-agnostic tag embeddings instead of pre-trained word embeddings.

▶ We devise a novel knowledge denoising module to make full use of
large-scale lexicons.
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Result
Results
The CWS task 南京/长江大桥/建成/于/1968年

南京

南京市

长江

长江大桥

……

The Nanjing Yangtze River Bridge was completed in 1968.

the location dictionary

Primary Baselines
• BERT-based Sequence Tagger

• Glyce (for CWS)

• FLAT (for Chinese NER)

• HSCRF+softdict (for English NER)

Lexicon
• the lexical entry contains item and category

• lexicon used in experiment consistent with the 

previous related work
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Result
Results
The NER task

• Experiment both on Chinese and English NER

• Chinese

• Weibo, MSRA, Resume, OntoNotes

• used lexicon is the same is Li et al.(2020) 

• English

• Conll2003, OntoNotes5.0

• used lexicon is the same as Liu et al.(2019a)
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Result
Results
The NLU task

Two scenarios
• Industrial dataset

To evaluate the method with large scale 

lexicon, the size of lexicon is 16M

• Public dataset

used common nlu datasets, Snips and ATIS

xiaoyi result
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Background

▶ Regular Expressions (REs) are broadly used in various NLP scenarios正则表
达式在各种NLP场合广泛应用
▶ Named Entity Recognition (NER)命名实体识别
▶ Data Cleaning数据清洗
▶ Sensitive content filtering敏感内容过滤
▶ Dialog Intent Identification and Slot Filling对话意图识别和槽位提取

▶ Strength and Weakness优缺点
▶ No need of large scale training data无需大量人工标注的训练数据
▶ Easy to read, write and edit for human experts易于理解，方便人工撰写和修改
▶ Hard to balance between precision and recall很难在准确率和召回率之间把握平
衡

▶ low coverage while not using wildcards不使用通配符容易导致低覆盖率
▶ too general while using wildcards too much使用很多通配符会导致过于宽泛

▶ low efficiency when too many REs正则表达式太多会导致执行效率大大降低
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Contribution of this work

▶ A method to convert a set of REs to a Neural Network (namely DFA-NN)
提出了一种方法可以将一组正则表达式转化为一个神经网络（称为DFA-NN）

▶ The DFA-NN is much more efficicent than a RE Recognizer
DFA-NN的执行效率远高于正则表达式识别器

▶ The DFA-NN provides a sort of soft matching ability
DFA-NN提供了某种软匹配的能力

▶ The DFA-NN can be trained with both REs and training examples
DFA-NN可以同时使用正则表达式规则和训练样例进行训练

▶ The DFA-NN performs better than the simple classifier NN, especially when
the training instances are few
DFA-NN在训练数据很少的时候表现远好于简单的NN分类器。
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DFA-NN: Integrating REs with NNs via DFA

▶ Convert an RE or a set of REs into a Minimal DFA (MDFA).
将一个或者一组正则表达式转换为一个最小确定性有限状态自动机（MDFA）。

▶ For each instance:
▶ We send the input sequence to the DFA, and get a DFA state for each token in

the sequence.
将输入序列送到DFA中，对于序列中的每一个token，我们得到一个DFA状态。

▶ We can also assign a sequence classification (True/False) depending on
whether the final DFA state of the sequence is an end state. It can also be a
multi-class label if there are multiple REs.
根据最后的DFA状态是否为一个终止状态，我们也可以给整个序列一个标记
（是/否）。如果有多个正则表达式，也可以使用多分类标签。
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DFA-NN: Integrating REs with NNs via DFA

▶ Then we train an BiLSTM-based classifier based on the training data with
token-level and instance-level labels.
然后我们使用这些带token级和instance级标记的训练数据来训练一个基
于BiLSTM的分类器。
▶ The sequences are fed to the BiLSTM and we obtain a hidden state vector for

each token.
把每个序列送到BiLSTM中，我们可以给序列中的每个token赋予一个隐状态向
量。

▶ Then we train a small multi-layer perceptron (MLP) to predict the DFA state for
each token using its hidden state vector.
然后我们训练一个小的多层感知机网络（MLP）来通过每个token对应的隐状态向
量来其对应的DFA状态。
(...To be continued续下页)
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DFA-NN: Integrating REs with NNs via DFA

▶ Then we train an BiLSTM-based classifier based on the training data with
token-level and instance-level labels.
然后我们使用这些带token级和instance级标记的训练数据来训练一个基
于BiLSTM的分类器。

(...Continued接上页)
▶ We pool the obtained DFA states of all the tokens in the sequence to obtained

an instance-level DFA state vector.
我们将预测得到的所有token的DFA状态通过池化操作得到一个instance级
的DFA状态向量。

▶ Finally we train another MLP to predict the instance-level label according to its
instance-level state vector and all the token-level hidden state vectors.
最后我们训练另一个多层感知机网络，根据instance级的DFA状态向量和token级
的所有隐状态向量，来预测整个sequence的类别标记。
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DFA-NN: Integrating REs with NNs via DFA

Integrating Regular Expressions with Neural Networks via DFA
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1Harbin Institute of Technology
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Abstract

Human-designed rules are widely used to
build industry applications. However, it is in-
feasible to maintain thousands of such hand-
crafted rules. So it is very important to inte-
grate the rule knowledge into neural networks
to build a hybrid model that achieves better per-
formance. Specifically, the human-designed
rules are formulated as Regular Expressions
(REs), from which the equivalent Minimal De-
terministic Finite Automatons (MDFAs) are
constructed. We propose to use the MDFA as
an intermediate model to capture the matched
RE patterns as rule-based features for each
input sentence and introduce these additional
features into neural networks. We evaluate the
proposed method on the ATIS intent classifi-
cation task. The experiment results show that
the proposed method achieves the best perfor-
mance compared to neural networks and four
other methods that combine REs and neural
networks when the training dataset is relatively
small.

1 Introduction

Although Neural Network (NN) based approaches
have been widely used in various natural language
processing tasks and achieved remarkable results
(Young et al., 2018), there are still limitations of
NNs faced by the community, such as the data-
hungry nature, lacking interpretability ability and
vulnerability to adversarial attacks. In most cases,
the NN-based models cannot be directly applied to
the scenario where there are limited training sam-
ples, where the rule-based methods can still work
properly and are widely used. Integrating human-
designed symbolic knowledge into NN-based mod-
els is believed to be a promising and practical way
to alleviate these limitations (Garcez et al., 2019),
and many works have been explored in this direc-
tion (Liang et al., 2017; Xie et al., 2019; Arora
et al., 2020; Luo et al., 2018). However, it is still an
open problem to effectively integrate the highly ab-
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Figure 1: The proposed method integrates REs with
NN through MDFA.

stract human knowledge encoded by discrete rules
with the data-driven neural models.

In this paper, we propose a novel method that
adopts the regular expression (RE) as human-
designed rules and combines it with the NN-based
model (i.e., NN-based sentence classifier). The key
problem is how to effectively represent the regular
expression into numeric features, and then inte-
grate them with neural models. In conventional
rule-based representations (Luo et al., 2018), the fi-
nal matching results of input sentences to REs (i.e.,
accept or reject) or the occurrences of some key
patterns in REs are directly used as the additional
features.

In this work, REs are converted into MDFAs,
and MDFAs are used as intermediate models to
capture more fine-grained MDFA-based features
from the input sentence. The MDFA-based features
easily integrate with neural networks and can be
absorbed effectively. Furthermore, we propose two
RE-NN hybrid models that incorporate the MDFA-
based features into NN at different levels. Compre-
hensive experiments are conducted on ATIS intent
classification dataset (Hemphill et al., 1990) with
training sets of various sizes. The experiment re-
sults demonstrate that the proposed hybrid models
improve the performance of NN and also perform
better than the existing models which combine NNs
with REs.

2 Method

Figure 1 shows the proposed method. Each RE
is first turned into MDFA with the algorithms in
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(Hopcroft et al., 2001). Based on the obtained
MDFA, a sequence of transition states can be ob-
tained for each input sentence, which presents local
matching patterns defined by the RE occurring in
the sentence. Then we transform this sentence-
dependent state sequence into MDFA-based fea-
tures and integrate them into NN as additional in-
put at the instance level or word level. For the
NN-based component, Recurrent Neural Network
(RNN) (Jain and Medsker, 1999) is used as the
backbone.

The instance-level integration aims to encour-
age the MDFA-based features to interact with
high-level NN-based representations of an en-
tire sentence. Differently, the word-level inte-
gration associates the MDFA-based features with
smaller-granularity semantic, i.e., word embed-
dings (Mikolov et al., 2013). The word-level in-
tegration strategy adopts MDFA-based features to
guide and regularize RNN internal representations
word by word, which is motivated by the recent
findings (Michalenko et al., 2018) that there exists
a strong structural relationship between internal
representations of RNNs and MDFAs when recog-
nizing formal languages.

2.1 Encode MDFA State Sequences into
Numeric MDFA-based Features

In this section, we describe how to encode MDFA
state sequences into numeric features that contain
the sentence-dependent information from rules. A
regular expression (RE) can be transformed into
an equivalent MDFA that embodies the human-
designed rules in RE (Hopcroft et al., 2001). For-
mally, an MDFA can be represented as M =
{S, E , δ, s0,F}, which contains a state set S , an in-
put symbol set E , a transition function δ : S×E →
S, an initial state s0 ∈ S and an end state set
F ⊂ S.

Matching RE with a sentence can be converted
to a sequence of MDFA state transition. A sentence
W = {w1, w2, . . . , wn} that contains n words is
fed into the MDFA word by word. Start from the
initial state s0, the MDFA will transfer from the cur-
rent state to a target state depending on the current
received word and the transition function δ. In this
way, a sequence of target state S can be observed
sequentially until one end state is reached or all the
words in W are exhausted. If S ends with an end
state in F , it means that the RE (or equivalently,
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Figure 2: Encode the MDFA state sequence as an
instance-level feature vector.

the MDFA) accepts the sentence W 1.
The state sequence S contains a detailed proce-

dure about how a RE examines the sentence. We
encode S as MDFA-based features for the sentence.
Suppose there are p REs for different labels, we
can obtain p MDFA state sequences by feeding W
into each RE. We use superscript k to identify the
k-th RE and represent the MDFA state sequence
produced by the k-th as Sk.

We propose two types of encoding, named
instance-level encoding and word-level encoding,
which encode MDFA state sequences as instance-
level features or word-level features respectively.
The instance-level encoding is to encode each
MDFA state sequence into a single feature vec-
tor. Specifically, for the k-th RE, all the different
states in the state set of the constructed MDFA are
indexed with consecutive integers. Then the Sk is
converted into a one-hot vector sequence by con-
verting each state in Sk by a one-hot vector based
on the integral index of it. Finally, the one-hot vec-
tor sequence is aggregated into a single vector uk

via max-pooling operation. Figure 2 illustrates an
example of calculating uk.

The word-level encoding encodes the MDFA
state sequences as word-level features, by which
every word in W is assigned with binary tags from
different REs. When matching the k-th RE with
W , the state transition is triggered word by word
by feeding the words inW into MDFA orderly. We
denote the state arrived at after MDFA consuming
the i-th word wi in W as skwi

and align it with wi.
Inspired by the BIO (Beginning-Inside-Outside)
tagging format (Ramshaw and Marcus, 1999), the
state skwi

is simplified to a binary tag vwi for wi as:

• wi is tagged with 1 (vwi = 1) if the k-th RE
accepts W and skwi

∈ Sk, which means the
wi is inside of the matching procedure and

1The conventional RE is character-based and results in a
character-triggered MDFA that contains massive fine-grained
states. To reduce the number of states and make these states
more informative, we employ the word-based RE instead of
character-based by treating a whole word as a single symbol.
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Experiments and Results

results in acceptance.

• wi is tagged with 0 (vwi = 0) otherwise.

Because of the high-precision low-recall nature of
human-designed rules, the “accept” output by RE
is more believable than the “reject”. Therefore,
the MDFA-based encoding is only activated when
the input sentence is accepted by the RE, set to
zero otherwise. In this way, binary tag sequence
vk = {vkw1

, vkw2
, . . . , vkwn

} can be obtained for W
based on the k-th RE.

Finally, we can obtain two types of MDFA-based
numeric features, {uk} and {vk} (k = 1, . . . , p),
which will be further incorporated into the NN-
based component at the instance level or word level
respectively.

2.2 NN-based Component
We use a pure NN-based sentence classifier, that
consists of a BLSTM (Bidirectional LSTM) with
attention mechanism as feature extractor (Zhou
et al., 2016) and a MLP (Multi-Layer Perceptron)
as classifier (Amendolia et al., 2003), as the NN-
based component in the proposed hybrid mod-
els. Specifically, for the input sentence W =
{w1, w2, . . . , wn}, BLSTM first generates a hid-
den state sequence H = {h1,h2, . . . ,hn} as

H = BLSTM({e(w1), . . . , e(wn)}), (1)

where e(·) denotes the embedding vector of the
input word. H is transformed to a fixed-length fea-
ture vector f through attention mechanism. Then
f is fed to the MLP classifier to calculate the class
probabilities y:

αi =
exp(hiWhn)∑
j exp(hjWhn)

, f =

n∑

i=1

αihi (2)

y = MLP(f) (3)

This NN-based component is also used as our NN
baseline, referred to as NNSC.

2.3 Introduce the MDFA-Based Features into
the NN-based Component

We import two types of MDFA-based features into
the NN-based component at the instance or word
level to build two hybrid models. In the first hybrid
model, referred to as INSTANCE, {uk} is intro-
duced into MLP classifier companying with the
NN-based feature f , which aims to enrich the NN-
based representation of the entire input sentence

with instance-level features. This hybrid model
calculates the probabilities by

y = MLP([f ;u1; . . . ;up]) (4)

instead of Equation (3) in the NNSC. [; ] denotes
concatenating of vectors.

The other hybrid model named WORD incorpo-
rates the word-level features {vk} into word embed-
ding. p REs produce p binary tag sequences {vk}
and each word in the input sentence corresponds to
p binary tags. All these p binary tags are appended
to the corresponding word embedding vector. For
word wi in the input sentence W , the word embed-
ding e(wi) is expanded to MDFA-enhanced word
embedding ev(wi):

ev(wi) = [e(wi); v
1
wi
; . . . ; vpwi

] (5)

And Equation (1) in NNSC is modified to

H = BLSTM({ev(w1), . . . , ev(wn)}) (6)

in this hybrid model when calculating y.

3 Experiments

3.1 Settings
We evaluate the models in few-shot settings, where
the training samples are insufficient to training
the NN-based model to achieve commendable per-
formance, to see if the hybrid model boosts the
performance by introducing human-designed rules.
To further show the effectiveness of the proposed
MDFA-based integration, we compared our hybrid
models with other hybrid models that combine REs
with NN without using MDFA.

We employ the widely used ATIS intent classifi-
cation dataset2. This dataset contains 4,978 training
samples and 893 test samples with 18 intent labels.
There are 54 manually written REs for intent classi-
fication obtained from Luo et al. (2018)3. We build
few-shot training sets by randomly selecting q sam-
ples for each class from the full training set. The
models are trained on each training set respectively
and evaluated on the official test set.

3.2 Comparison with NN and Other RE-NN
Hybrid Models

Our hybrid models are compared with the pure NN-
based model (denoted as NNSC) and four RE-NN

2https://pfllo.github.io/data/ACL18-data_split.zip
3https://pfllo.github.io/data/ACL18-REs.zip
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Figure 3: Comparisons of the REs, NN-based model (denoted as NNSC) and the proposed hybrid models (denoted
as INSTANCE and WORD).

Model q=5 q=10 q=20 q=5 q=10 q=20
w/300 w/300 w/300

MLP-I* 63.72 73.46 83.20 94.23 94.90 95.71
MLP-O* 58.68 77.83 89.25 91.82 97.09 97.15
ATTN (luo et al.) 75.36 85.44 88.80 92.05 96.98 97.76
FOL (hu et al.) 56.22 68.42 84.10 91.94 96.75 97.42

NNSC (ours) 65.28 73.90 86.89 94.06 96.97 98.20
INSTANCE (ours) 81.97 84.99 91.04 94.51 97.64 97.87
WORD (ours) 80.17 86.67 90.25 94.62 97.20 98.32

Table 1: Comparisons with the other methods that com-
bine REs with NN without MDFA and the NN-based
Model (denoted as NNSC). * indicates the baseline hy-
brid models described in (Luo et al., 2018). The results
are reported in accuracy.

hybrid models that introduce REs into NN with-
out using MDFA, as shown in Table 14. MLP-I

feeds the final matching results of REs into the
MLP classifier as additional features, while hybrid
model INSTANCE introduces the more fine-grained
MDFA-based encodings. MLP-O add the RE match-
ing result to the probabilities output by the MLP
classifier, ATTN uses the keywords in REs to regu-
larize the attention weights in NNSC. FOL converts
the REs into FOL (First-Order-Logic) rules and dis-
tills the knowledge from FOL rules into NN using
the method proposed by (Hu et al., 2016).

It can be seen that INSTANCE and WORD achieve
better performances. We conjecture that this is be-
cause the MDFA-based features can capture more
fine-grained information from REs, and these fea-
tures can be well absorbed by neural networks with
the proposed integration strategies.

3.3 Experiments on Training Sets of
Different Sizes

To further investigate the performance of the mod-
els on training sets of different sizes, we selected 69
values for q from 1 to 400 and constructed the train-
ing sets accordingly. To reduce the impact of ran-

4“w/300” represents 300 extra training samples from each
top 3 frequency classes are used additionally. These train-
ing sets are used in (Luo et al., 2018) and imported for fair
comparisons.

domness, we repeat each selection three times and
the experiment on each training set 5 times. The
performances of the proposed models and NNSC

are graphically shown in Figure 3, with the shadow
representing the 95% confidence interval.

Note that the proposed hybrid models achieve
significant improvements when the amount of train-
ing data is small (e.g., q ≤ 30). Due to the elements
in the MDFA-based features has a small value set
(i.e., 0, 1), such features have fewer combinations
than natural language constituted by thousands
of different words. Therefore, the MDFA-based
features can be learned even with fewer training
samples. However, in the case when the training
dataset is large enough, the REs (i.e., 65.7% accu-
racy shown as the dashed line in Figure 3) are much
weaker than NNSC. The performance is therefore
hard to be boosted by additionally utilizing rules,
and the improvements over NNSC decrease as the
training set size increases.

The average accuracy improvement over all the
constructed training sets that the proposed IN-
STANCE and WORD models achieved are 2.55%
and 3.99%, respectively. The word-level integra-
tion performs relatively better than the instance-
level. We think it is because there exist rich and
flexible interactions between RNN and rule-based
features.

4 Conclusions

In this paper, we tried to incorporate human-
designed REs into NN-based models. The REs
are transformed into MDFAs to provide MDFA-
based features that can be easily absorbed by NN.
Moreover, we proposed two kinds of hybrid mod-
els that incorporate the MDFA-based features into
NN at word level or instance level. The experiment
results on the ATIS intent classification task have
shown that the proposed hybrid models improve
the performance of NN when the training data is in-
sufficient and further outperform the other RE-NN
hybrid models without using MDFA.
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Figure 3: Comparisons of the REs, NN-based model (denoted as NNSC) and the proposed hybrid models (denoted
as INSTANCE and WORD).

Model q=5 q=10 q=20 q=5 q=10 q=20
w/300 w/300 w/300

MLP-I* 63.72 73.46 83.20 94.23 94.90 95.71
MLP-O* 58.68 77.83 89.25 91.82 97.09 97.15
ATTN (luo et al.) 75.36 85.44 88.80 92.05 96.98 97.76
FOL (hu et al.) 56.22 68.42 84.10 91.94 96.75 97.42

NNSC (ours) 65.28 73.90 86.89 94.06 96.97 98.20
INSTANCE (ours) 81.97 84.99 91.04 94.51 97.64 97.87
WORD (ours) 80.17 86.67 90.25 94.62 97.20 98.32

Table 1: Comparisons with the other methods that com-
bine REs with NN without MDFA and the NN-based
Model (denoted as NNSC). * indicates the baseline hy-
brid models described in (Luo et al., 2018). The results
are reported in accuracy.

hybrid models that introduce REs into NN with-
out using MDFA, as shown in Table 14. MLP-I

feeds the final matching results of REs into the
MLP classifier as additional features, while hybrid
model INSTANCE introduces the more fine-grained
MDFA-based encodings. MLP-O add the RE match-
ing result to the probabilities output by the MLP
classifier, ATTN uses the keywords in REs to regu-
larize the attention weights in NNSC. FOL converts
the REs into FOL (First-Order-Logic) rules and dis-
tills the knowledge from FOL rules into NN using
the method proposed by (Hu et al., 2016).

It can be seen that INSTANCE and WORD achieve
better performances. We conjecture that this is be-
cause the MDFA-based features can capture more
fine-grained information from REs, and these fea-
tures can be well absorbed by neural networks with
the proposed integration strategies.

3.3 Experiments on Training Sets of
Different Sizes

To further investigate the performance of the mod-
els on training sets of different sizes, we selected 69
values for q from 1 to 400 and constructed the train-
ing sets accordingly. To reduce the impact of ran-

4“w/300” represents 300 extra training samples from each
top 3 frequency classes are used additionally. These train-
ing sets are used in (Luo et al., 2018) and imported for fair
comparisons.

domness, we repeat each selection three times and
the experiment on each training set 5 times. The
performances of the proposed models and NNSC

are graphically shown in Figure 3, with the shadow
representing the 95% confidence interval.

Note that the proposed hybrid models achieve
significant improvements when the amount of train-
ing data is small (e.g., q ≤ 30). Due to the elements
in the MDFA-based features has a small value set
(i.e., 0, 1), such features have fewer combinations
than natural language constituted by thousands
of different words. Therefore, the MDFA-based
features can be learned even with fewer training
samples. However, in the case when the training
dataset is large enough, the REs (i.e., 65.7% accu-
racy shown as the dashed line in Figure 3) are much
weaker than NNSC. The performance is therefore
hard to be boosted by additionally utilizing rules,
and the improvements over NNSC decrease as the
training set size increases.

The average accuracy improvement over all the
constructed training sets that the proposed IN-
STANCE and WORD models achieved are 2.55%
and 3.99%, respectively. The word-level integra-
tion performs relatively better than the instance-
level. We think it is because there exist rich and
flexible interactions between RNN and rule-based
features.

4 Conclusions

In this paper, we tried to incorporate human-
designed REs into NN-based models. The REs
are transformed into MDFAs to provide MDFA-
based features that can be easily absorbed by NN.
Moreover, we proposed two kinds of hybrid mod-
els that incorporate the MDFA-based features into
NN at word level or instance level. The experiment
results on the ATIS intent classification task have
shown that the proposed hybrid models improve
the performance of NN when the training data is in-
sufficient and further outperform the other RE-NN
hybrid models without using MDFA.
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Rule-based engine for Dialog Systems
▶ Although deep learning has been great successful in NLP, rule-based dialog

engines are still broadly used in industries，because:
虽然深度学习在NLP中取得了巨大成功，但工业界还在普遍使用基于规则的对
话引擎，因为：
▶ It is hard to encode complex business logic within a NN.
使用神经网络来实现复杂的业务逻辑非常困难。

▶ It is hard to change the business logic given an existings NN.
修改已有神经网络中的业务逻辑非常困难。

▶ A rule-based dialog engine has further advantages because its hierarchical
representation:
由于采用层次表示，基于规则的对话引擎还有更多优点：
▶ Support multi-intent utterances.
支持多意图表达。

▶ Support negative expressions.
支持否定表达。

10_1 / 14



Rule-based engine for Dialog Systems

▶ However, compared to NNs, rule-based dialog engines have some
disadvantages:
然而，相对于神经网络，基于规则的对话引擎有以下劣势：
▶ Fragility. Possibly fail when the users change their expressions slightly.
脆弱性。用户略微改变其表达方式可能就无法识别。

▶ Low efficiency, especially when the rule-base is very large.
效率低，尤其当规则数量非常的时候。
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Abstract

We propose a semantic parser for parsing com-
positional utterances into Task Oriented Parse
(TOP), a tree representation that has intents
and slots as labels of nesting tree nodes. Our
parser is span-based: it scores labels of the
tree nodes covering each token span indepen-
dently, but then decodes a valid tree globally.
In contrast to previous sequence decoding ap-
proaches and other span-based parsers, we (1)
improve the training speed by removing the
need to run the decoder at training time; and
(2) introduce edge scores, which model rela-
tions between parent and child labels, to mit-
igate the independence assumption between
node labels and improve accuracy. Our best
parser outperforms previous methods on the
TOP dataset of mixed-domain task-oriented
utterances in both accuracy and training speed.

1 Introduction

Most commercial conversational AI systems parse
task-oriented utterances using intent classification
and slot-filling models (He and Young, 2003; Ray-
mond and Riccardi, 2007; Mesnil et al., 2015),
where the intent is the task of the utterance
(e.g., IN:GET DIRECTION) and the slots are the
parameters needed to complete the task (e.g.,
SL:DESTINATION). This limited representation
typically allows only a single intent per utterance
and at most one slot label per token. Dialog sys-
tems using such a flat representation would strug-
gle to handle compositional tasks that involve in-
voking multiple backend services (e.g., “direction
to John’s party”: find John’s address, and then find
the direction to that address).

To support compositional utterances, the hierar-
chical Task Oriented Parsing (TOP) representation
has recently been introduced (Gupta et al., 2018).
As illustrated in Figure 1, the TOP representation

∗work done while at Facebook Assistant.

IN:GET DIRECTION

SL:DESTINATION

IN:FIND EVENT

SL:CATEGORY

party4

’s3SL:ORGANIZER

John2

directions0 to1

T = {(0, 5) : (IN:GET DIRECTION),

(2, 5) : (SL:DESTINATION, IN:FIND EVENT),

(2, 3) : (SL:ORGANIZER),

(4, 5) : (SL:CATEGORY),

(0, 1) : ∅, (0, 2) : ∅, (0, 3) : ∅, . . . }

Figure 1: An example TOP tree and its mapping repre-
sentation T . (IN: = intent; SL: = slot)

is a tree where intents and slots are nested alter-
natively to model composition. The values inside
intent and slot subtrees can then be used by down-
stream dialog modules to invoke appropriate ser-
vices in a hierarchical fashion.

We propose a span-based semantic parser for
parsing utterances into the TOP representation. In
its most basic form, the parser embeds each to-
ken span (e.g., x2:5 = “John ’s party” in Fig-
ure 1) as a vector, and then uses it to predict the
labels of the tree nodes covering the span (e.g.,
SL:DESTINATION and IN:FIND EVENT). While
the label prediction is done independently for each
span, a CKY decoding algorithm is used to decode
a valid tree with the maximum tree score.

Our main contributions are twofold. First, we
reinterpret the ad-hoc tree score in previous span-
based parsing work (Stern et al., 2017; Gaddy
et al., 2018; Kitaev and Klein, 2018) as a joint dis-
tribution over the labels. Under this new frame-
work, the loss function factors nicely, which al-
lows us to train the model in a highly parallelized
fashion instead of having to run the computation-
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Method Acc F1 Time
seq2seq 78.24 90.78 8m
RNNG 80.63 92.61 1h 16m
Stern-chart 80.66 93.03 25m
Stern-greedy 80.79 92.83 22m
ours (no fe) 80.80 93.35 5m
ours (+ fe) 81.80 93.63 9m

Table 1: The test exact match accuracy, labeled bracket
F1, and training time per epoch of different methods.

Error type no fe + fe
wrong top intent 106 99
wrong label except top intent 381 367
wrong non-terminal boundary 133 133
missing a non-terminal 153 154
spurious non-terminal 198 185
joining two gold non-terminals 20 26
splitting a gold non-terminal 27 36
other errors 6 4

Table 2: The error breakdown on the development data
of our span-based models. Note that an example can
have multiple errors.

Training speed. Our span-based models can be
trained in a highly parallelized fashion without
having to run the computationally expensive de-
coder. Table 1 shows the average wall-clock time
used to train the model for one epoch over the
training data.

Error analysis. We compare the errors made by
the span-based parsers on the development set. Ta-
ble 2 provides a breakdown of the error counts of
the models on development data.

Recall trade-off. As described in Section 4, the
hyperparameter α controls the weight of the loss
terms for the class c = ∅ (i.e., not building a
subtree for the span). As such, we can use α
to trade off two types of errors: missing non-
terminals (over-predicting c = ∅) and spurious
non-terminals (under-predicting c = ∅). As
shown in Figure 2, higher α encourages the model
to predict c = ∅ more frequently, leading to
more missing non-terminals (intents and slots) and
fewer spurious ones. We can also tune α based
on the downstream tasks. For instance, getting a
higher slot recall using a small α is arguably better
for dialog systems since other downstream mod-
ules (e.g., entity linker) can detect and discard spu-
rious slots.
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Figure 2: Trade-off between missing and spurious non-
terminals with different α (weight for class c = ∅).

When α is low, one common type of errors is
when the models incorrectly split a non-terminal.
This usually happens when the gold slot consists
of two sub-phrases that can be interpreted as slots
on their own (e.g., a SL:CATEGORY EVENT slot
“holiday concerts” is split into a SL:DATE TIME

slot “holiday” and a SL:CATEGORY EVENT slot
“concerts”). As the tree score is the sum of span
scores, the parser is biased toward creating two
non-terminal nodes instead of one. Luckily, in the
context of task-oriented dialogs, this type of er-
rors tends to have small effects on the semantic
interpretation, and sometimes even provides more
useful information for downstream modules.

7 Conclusion

We presented the first span-based parser for pars-
ing utterances into the hierarchical intent-slot rep-
resentation. The log-likelihood objective allows us
to train the model without having to decode a tree
in a highly parallelized fashion, while edge scores
can explicitly capture the parent-child relationship
even when their boundaries are far apart.

Apart from standard accuracy improvement
techniques such as better token embeddings and
ensembling, possible future directions include a
more fine-grained control of the recall trade-off,
modeling the tokens outside the non-terminals in-
stead of ignoring them, incorporating the parent’s
embedding in edge scores, and a more efficient or
approximate decoder similar to the greedy decoder
from Stern et al. (2017).

Pasupat et al., Span-based Hierarchical Semantic Parsing for Task-Oriented Dialog, EMNLP2019
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Span-based Hierarchical Semantic Parsing for TOD

▶ This method outperformed existing methods, while have a high training and
inference speed as fast as seq2seq model.
这种方法比已有方法获得了更好的性能，同时具有跟seq2seq模型快的训练和
推理速度。

▶ However, we see there are still drawbasks as:
不过，这种方法还有一些缺点：
▶ There are still space to improve the accuracy.
识别准确率还有待继续提高。

▶ The performance will drop when the lexicon is updated.
词典更新会导致性能下降。

Pasupat et al., Span-based Hierarchical Semantic Parsing for Task-Oriented Dialog, EMNLP2019
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Our Method: Lexicon-injected Semantic Parsing for TOD

▶ Our method improves the model proposed by (Pasupat et al., 2019) in the
following ways:
我们对(Pasupat et al., 2019)的模型进行了以下改进：
▶ We improve the performance of the span-based parser by incorporating a

splitting feature into the span representation.
我们在Span表示中引入了断点特征，从而提高了Span-based分析器的性能。

▶ We propose a novel lexicon-injected method and a slot disambiguation method
to further improve the semantic parsing performance, to ensure the parser can
keep a high performance when updating the lexicon.
我们提出了一种新颖的词典注入方法和槽位排歧方法，可以进一步改进语义分析
的性能，并确保在词典更新后语义分析器的性能不会下降。
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Our Method: Lexicon-injected Semantic Parsing for TOD

Figure 2: Encoder-Decoder architecture of our span-
based parser. The light green part is our lexicon-injected
method, which tags each span matched in the lexicon as
the slot category it belongs to. The slot disambiguation
is used to remove inappropriate slot-match occurrences
in the lexicon, as further shown in Figure 3.

Our parser follows an encoder-decoder architec-166

ture (Figure 2). The encoder is a two-layer trans-167

former (Vaswani et al., 2017) and the decoder is a168

chart parser borrowed from Stern et al. (2017).169

3.1 Encoder170

We first represent each word xi using two pieces of
information: an external context-aware word rep-
resentation wi and a learned position embedding,
where every position i ∈ 1, 2, . . . , n is associated
with a vector pi. We concatenate these two embed-
dings to generate a representation of word:

xi = [wi; pi]

Span representation. To get the representation171

of span (i, j) in the utterance, we first introduce172

a notation of boundary between each consecu-173

tive words (xi−1, xi) in the utterance by feeding174

the entire utterance x = (x1, . . . , xn) into a two-175

layer Transformer, and then calculate the boundary176

representation as fi−1,i. Specifically, given the177

output hi from the encoder for word xi, we ran-178

domly split it into two halves [h1i ;h
2
i ] and define179

fi−1,i = [h1i−1;h
2
i ], which means each boundary180

representation is decided by the left and right con-181

text together. In this way, the dimension of fi−1,i182

is the same as hi (see Appendix A).183

For an utterance x with length as n, we are able 184

to calculate the context-aware boundary represen- 185

tations (f1,2, f2,3, . . . , fn−1,n) with size of n − 1. 186

Notice that the beginning and ending tokens are 187

special tokens such as [CLS] and [SEP] used in 188

Devlin et al. (2019). 189

We define the representation of span (i, j) as:

ri,j = fj,j+1 − fi−1,i
which uses the left and right boundaries to decide 190

the in-between span. We don’t use the addition of 191

left and right boundaries due to that it misses the 192

order information. 193

3.2 Decoder 194

We use the chart parser of Stern et al. (2017) with
additional modifications in Gaddy et al. (2018) and
Kitaev and Klein (2018). Our parser assigns a score
function s(T ) to each mapping T , which can be
regarded as a tree shown in Figure 1. It decomposes
as:

s(T ) =
∑

T :(i,j)→l

s(i, j, l)

where s(i, j, l) is a real-valued score for the span 195

(i, j) that has label l. This span-label scoring func- 196

tion is implemented as one-layer feedforward net- 197

work, taking as input the span representation ri,j 198

and producing as output a vector of label scores: 199

slabel(i, j) = V ReLU(Wri,j + b), (1) 200

s(i, j, l) = [slabel(i, j)]l (2) 201

Let k denote the index of splitting point where 202

parent span node is divided into left and right child 203

node, we define s∗(i, j) as the score of the best 204

subtree spanning (i, j): 205

s∗(i, j) =max
l,k

[s(i, j, l)

+ s∗(i, k − 1) + s∗(k, j)]
(3) 206

To parse the full utterance x, we compute
s∗(1, n) and then traverse backward to recover the
tree achieving that score. Therefore, the optimal
inference tree T ∗ can be found efficiently using a
CKY-style bottom-up inference algorithm:

T ∗ = argmax
T

s(T )

We follow the common approaches (Stern et al., 207

2017; Pasupat et al., 2019) of handling the unary 208

chain by a collapsed entry, and the N -ary trees by 209

binarizing them and introducing a dummy label. 210

More details can be found in Appendix B. 211
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Figure 2: Encoder-Decoder architecture of our span-
based parser. The light green part is our lexicon-injected
method, which tags each span matched in the lexicon as
the slot category it belongs to. The slot disambiguation
is used to remove inappropriate slot-match occurrences
in the lexicon, as further shown in Figure 3.

Our parser follows an encoder-decoder architec-166

ture (Figure 2). The encoder is a two-layer trans-167

former (Vaswani et al., 2017) and the decoder is a168

chart parser borrowed from Stern et al. (2017).169

3.1 Encoder170

We first represent each word xi using two pieces of
information: an external context-aware word rep-
resentation wi and a learned position embedding,
where every position i ∈ 1, 2, . . . , n is associated
with a vector pi. We concatenate these two embed-
dings to generate a representation of word:

xi = [wi; pi]

Span representation. To get the representation171

of span (i, j) in the utterance, we first introduce172

a notation of boundary between each consecu-173

tive words (xi−1, xi) in the utterance by feeding174

the entire utterance x = (x1, . . . , xn) into a two-175

layer Transformer, and then calculate the boundary176

representation as fi−1,i. Specifically, given the177

output hi from the encoder for word xi, we ran-178

domly split it into two halves [h1i ;h
2
i ] and define179

fi−1,i = [h1i−1;h
2
i ], which means each boundary180

representation is decided by the left and right con-181

text together. In this way, the dimension of fi−1,i182

is the same as hi (see Appendix A).183

For an utterance x with length as n, we are able 184

to calculate the context-aware boundary represen- 185

tations (f1,2, f2,3, . . . , fn−1,n) with size of n − 1. 186

Notice that the beginning and ending tokens are 187

special tokens such as [CLS] and [SEP] used in 188

Devlin et al. (2019). 189

We define the representation of span (i, j) as:

ri,j = fj,j+1 − fi−1,i
which uses the left and right boundaries to decide 190

the in-between span. We don’t use the addition of 191

left and right boundaries due to that it misses the 192

order information. 193

3.2 Decoder 194

We use the chart parser of Stern et al. (2017) with
additional modifications in Gaddy et al. (2018) and
Kitaev and Klein (2018). Our parser assigns a score
function s(T ) to each mapping T , which can be
regarded as a tree shown in Figure 1. It decomposes
as:

s(T ) =
∑

T :(i,j)→l

s(i, j, l)

where s(i, j, l) is a real-valued score for the span 195
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tion is implemented as one-layer feedforward net- 197

work, taking as input the span representation ri,j 198

and producing as output a vector of label scores: 199

slabel(i, j) = V ReLU(Wri,j + b), (1) 200

s(i, j, l) = [slabel(i, j)]l (2) 201
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into the span representation
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▶ For each word appears in a slot with the category tag ti , we

assign ti to the word in the lexicon. Thus each word may
have multiple tags. We train an embedding qi for each tag ti
which is initialized randomly.

▶ For those words which appear outside the slots, we define a
special tag t0.

▶ We concatenate the category embeddings to the previous
defined word representation:
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▶ We define a new generalized word representation by
replacing the word embedding with its tag embedding:

embedding together as qi. For word not appear-276

ing in any slot category, qi is imputed as a special277

vector qo. The decoder remains the same.278

Generalized representation In addition, to em-279

power the slot-category embedding to affect pars-280

ing tasks, we propose to replace wi with qi when281

this word appears in the lexicon as shown in the282

equation (7). In this generalized representation,283

we abandon the original word embeddings and en-284

force the slot-category embedding to take control285

of representing spans from the lexicon. Via this286

replacement, we also aim to make the model more287

informative of slot categories and less constrained288

to specific slot values, and thus it is able to model289

newly added unseen slot values as well as seen290

values from the lexicon.291

xi =

{
[wi; pi; qi], ti = to

[qi; pi; qi], otherwise.
(7)292

However, slot categories are often overlapping.293

One utterance might contain spans from slot cate-294

gories other than the ground-truth tree. This mis-295

match brings unexpected noises to the qi, especially296

in the case of nested hierarchical representation in297

the TOP dataset. Therefore, we further propose a298

disambiguation technique that aims to remove in-299

appropriate span match occurrences in the lexicon.300

4.2 Slot Disambiguation301

We regard this lexicon-mismatch problem as a se-302

quence binary classification with input of utterance,303

slot category and slot position, and output whether304

this slot match occurrence is correct or not in the305

given context.306

For each utterance, the slot category associated307

with the right position as annotated in the parse tree308

is labeled as True (positive sample); otherwise, it’s309

a mismatch labeled as False (negative sample). For310

instance of the table 1, this utterance has multiple311

matched entries in the lexicon, and only positive312

samples are consistent with its ground-truth parse313

tree. Note that negative samples might be more314

than positive when the lexicon table is large. Our315

sampling strategy is to keep the top two longest316

negative samples for each matched starting point in317

the sentence. In addition, we also try to use all the318

possible negative samples. We haven’t noticed any319

significant resulting difference in performances.320

In the disambiguation model, we insert the slot321

category as a token to the left and right bound-322

ary of corresponding slot values in the origin323

How1 is2 traffic3 heading4 to5 Dad6 ’s7

house8

SL:DESTINATION 6:8 True
SL:TYPE_RELATION 6:6 True
SL:CONTACT 6:6 False
SL:DESTINATION 8:8 False
SL:SEARCH_RADIUS 5:5 False
. . .

Table 1: Example of labeled data for training slot dis-
ambiguation model. Columns are slot category, slot
position in the utterance and binary labels.

utterance (see colorful tokens in Figure 3) and 324

feed them as a whole into the pretrained lan- 325

guage model (e.g., BERT-base from Devlin et al. 326

(2019)) to perform sequence classification. In de- 327

tails, each slot category composes two unused 328

slot-category tokens: the left and right to the 329

slot value, which means there are 72 new intro- 330

duced tokens such as “[SL:DESTINATION.left]” 331

and “[SL:DESTINATION.right]” in Figure 3. 332

The pretrained context-aware word embedding 333

and slot-category token embedding keep updated 334

in the training session. Finally, we use the [CLS] 335

hidden state hcls to perform sequence classification 336

on label c as commonly used in Devlin et al. (2019): 337

p(c|hcls) = softmax(Whcls + b)

In the inference, we compare each utterance to 338

the collected lexicon and find all the match occur- 339

rences. Then we use this disambiguation model to 340

classify each match occurrence and remove inap- 341

propriate ones given the context. This filter aims 342

to largely reduce the noisy tagging when construct- 343

ing the lexicon-injected input embedding xi for the 344

subsequent parsing model. 345

Adaptation to unseen values. Via the human- 346

driven adaptation of altering the lexicon, our 347

lexicon-injected method can be easily adapted to 348

parse unseen slot values from a predefined slot 349

category, with no need of retraining both the slot 350

disambiguation model and the parser as shown in 351

Figure 2. We will demonstrate this easy and quick 352

adaptation merit in the Experiments. 353

5 Experiments 354

We evaluate our proposed models on the TOP 355

dataset (Gupta et al., 2018), which has a hierar- 356

chical representation of intent-slot annotations for 357

utterances in navigation and event domains. 1 All 358

the code of this paper will be made public. 359

1http://fb.me/semanticparsingdialog
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▶ Thus we can make the model more informative of the
slot-categories rather the specific word, and ensure the
model performance will remain when we update the lexicons
with unseen entities in the training data.
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Figure 3: Demonstration of our slot disambiguation
technique to inject lexical features to the input embed-
ding for lexicon-injected parsers.
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there are 36 distinct slot categories, and 20059 slot 264

values (15238 are unique), which means each slot 265
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only built from train set because we aim to make 267

a fair comparison to baselines. When a span of 268
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category. Therefore, each word may have multiple 271
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Experiments and Results
Method Acc F1
Non-lexicon-injected parser:
Pasupat 80.80 93.35
Pasupat-edge 81.80 93.63
Decoupled RoBERTa 84.52 -
Decoupled BART 87.10 -
Seq2SeqPtr (+BERT) 83.13 -
Seq2SeqPtr (+RoBERTa) 86.67 -
Ours (base)† 83.06 94.23
Ours (+Split)† 83.97 94.55
Ours (+RoBERTa) 85.77 95.24

Our lexicon-injected parser:
w/o Slot Disambiguation† 81.83 93.87
w/ Slot Disambiguation† 85.63 96.13
w/ SD + GR† 86.80 96.34
w/ SD + GR + RoBERTa 87.62 96.60

Table 2: Comparison of complete match accuracy and
labeled bracket F1 of different methods on TOP test set.
SD, GR and † denote to slot disambiguation, generalized
representation and use BERT-base model.

Baselines. Most baselines for this task are well360

described in Gupta et al. (2018); Aghajanyan et al.361

(2020). We only include the most competitive base-362

lines in the Table 2: the first span-based parser on363

TOP representation (Pasupat et al., 2019), with an364

additional improvement of using edge scores to365

model relations between parent and child labels;366

the generative model Seq2SeqPtr (Rongali et al.,367

2020) based on the Pointer-Generator architecture368

to understand user queries; a family of Seq2Seq369

models (decoupled RoBERTa/BART) (Aghajanyan370

et al., 2020) that set state of the art in parsing de-371

coupled TOP representation.372

Methods. We perform this parse task with a few373

variants: 1) base model with BERT-base (Devlin374

et al., 2019) or RoBERTa-base (Liu et al., 2019) as375

contextualized word embedding ; 2) adding split-376

ting feature to span representation as r̂i,j ; 3) the377

trivial lexicon-injected parser without using slot378

disambiguation; it means there exists an amount of379

noisy span mismatch to the lexicon; 4) the lexicon-380

inject parser with oracle hints from the ground-truth381

parse tree; it means there is no mismatch at all382

when constructing qi embedding (Appendix C); 5)383

the lexicon-injected parse with slot disambiguation384

technique as a pre-filter; For 4) and 5), we use an385

additional generalized representation to empower386

the slot-category embedding. Once we use an exter-387

nal pretrained model with a different dimension of 388

word embedding to wi, we simply apply a learned 389

one-layer feedforward network to align it. Training 390

details can be found in Appendix A. 391

Results. We report the exact match accuracy and 392

the labeled bracket F1 score as widely measured for 393

the parse tree constituents (Black et al., 1991). Our 394

base model with the transformer encoder outper- 395

forms span-based baselines in two measurements 396

(83.06/94.23%), as shown in Table 2. This might 397

not be a surprising result given baselines (Pasupat 398

et al., 2019) are mostly using biLSTMs as sequence 399

embedder. We believe pretrained transformer em- 400

bedders such as BERT are more semantic expres- 401

sive than RNN models. 402

We find that adding split-up information (+Split) 403

to the embedding (span-splitting representation) 404

is able to improve the complete match by almost 405

one percent (+0.91%), which is quite significant 406

for intent classification and slot-filling tasks. The 407

result suggests bottom-up splitting decisions from 408

child spans contribute to improve the parser. 409

The trivial lexicon-injected parser without using 410

slot disambiguation technique (w/o SD) is not even 411

comparable (81.83%) to the base model, because 412

utterances highly overlap with the lexicon, which 413

brings an amount of unexpected mismatch to the 414

input embedding. We also evaluate on the oracle 415

parsers that have no mismatch spans via the help 416

of ground-truth dev trees. Details can be found in 417

Appendix C. This upper bound result motivates us 418

to come up with a slot disambiguation technique. 419

Results in Table 2 show that the slot disambigua- 420

tion technique (w/ SD) is very promising to remove 421

inappropriate span match occurrences, and thus 422

largely improve the downstream parsing accuracy 423

from 83.06% to 85.63%. The classification result 424

of slot disambiguation is presented in the section 425

5.3. Moreover, the additional generalized represen- 426

tation (SD + GR) brings 1.17% improvement to 427

our parser, which shows the generalized represen- 428

tation makes our parser be more informative of slot 429

categories when tackling related slot values. 430

In addition, our base model (+RoBERTa) out- 431

performs decoupled RoBERTa by 1.25% percent, 432

and achieves comparable performances to the mod- 433

ern generative Seq2SeqPtr. To our knowledge, 434

the decoupled method is generally not as good as 435

Seq2SeqPtr given the fact that Seq2SeqPtr with 436

RoBERTa achieves a better performance (+2%) 437

than decoupled RoBERTa. The performance of 438
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Method Acc F1
Non-lexicon-injected parser:
Pasupat 70.90 -
Ours (+Regex substitution)† 69.94 -
Ours (+RoBERTa) 74.35 92.10
Seq2SeqPtr (+RoBERTa) 74.91 92.42
Using the original lexicon:
w/ Slot Disambiguation† 71.75 93.23
w/ SD + GR† 70.95 93.19
w/ SD + GR + RoBERTa 71.87 93.49
w/ SD + RoBERTa 72.78 93.73
Altering the lexicon:
w/ Slot Disambiguation† 84.80 95.92
w/ SD + GR† 86.30 96.25
w/ SD + GR + RoBERTa 87.27 96.54

Table 3: Comparison of complete match accuracy and
labeled bracket F1 of different methods on the modified
TOP test set with introducing unseen slot values. SD,
GR and † denote to slot disambiguation, generalized
representation and using BERT-base respectively.

the decoupled BART (Aghajanyan et al., 2020) is439

better while we believe the credit goes to its high-440

capacity pretrained encoder. We aim to compare441

those methods in the same encoder setting. Overall,442

our best parser (SD + GR + RoBERTa) achieves443

the new art of the state (87.62%), which is even444

better than decoupled BART and an ensemble of445

RNNGS (Einolghozati et al., 2019).446

5.1 Adaptation to unseen values447

To explore the adaptation of lexicon-injected meth-448

ods in real task-oriented dialog, we modify TOP449

test data by introducing unseen slot values to pre-450

defined slot categories. In particular, we randomly451

choose two slot categories, and design five new452

slot values for each category. Afterwards, for each453

parse tree in the test set, we replace leaf nodes with454

random new slot values if this node belongs to the455

chosen category. In total, there are 1621 modifica-456

tions on 8241 utterances of the test set. Examples457

can be found in Appendix D.458

As shown in Table 3, since the modified test set459

encompasses a wide range of modifications, the460

performance of parsers without re-training drops461

dramatically (around -11% for all base models).462

Unfortunately, this decrease in accuracy applies463

to our lexicon-injected parsers, since newly added464

slot values are not found in the initial lexicon.465

However, by simply adding all possible unseen466

slot values to the lexicon table, our lexicon-injected467

Figure 4: Comparison of complete match accuracy of
different methods on varying modified TOP test set.

parser outperforms alternatives to serve real-time 468

utterances parsing. Without re-training any part of 469

the model, our parser (w/ SD) is able to achieve 470

comparable performances with before. In particu- 471

lar, the complete match accuracy for the parer (w/ 472

SD + GR) is only reduced by 0.5%. This merit 473

benefits real dialog systems (e.g., virtual assistants) 474

a lot since these systems often maintain a couple 475

of frequently updated lexicons (e.g., contacts). 476

Regex substitution. We consider other potential 477

human hard-coding adaptation such as incorporat- 478

ing regex substitution on the user queries, in par- 479

ticularly, substituting possible new slot values with 480

alternatives from the same slot-category in the orig- 481

inal lexicon. Then we feed queries to our trained 482

parsers and undo replacement on final parsed trees. 483

However, the performance of human hard- 484

coding adaptation is relatively low due to the over- 485

lapped entries of new slot values on user queries. 486

For instance, a new slot value "bridge" is added 487

to SL:LOCATION. Unfortunately, "bridge" is 488

also an existing entry in SL:PATH and "san 489

franciscos bridge" is in SL:DESTINATON. 490

Therefore, the hard-coding rules might bring ran- 491

domness and noises to parsers. 492

Retraining. Retraining existing models with un- 493

seen slot values added to train set can recover 494

the performances to the similar results in Table 2. 495

However, such retraining process is usually time- 496

consuming and unrealistic to perform in real-time 497

task-oriented parsing. 498

Evaluation. To further evaluate our methods to a 499

large scale with more randomness, we build vary- 500

ing modified TOP test sets, with randomly choos- 501

ing five predefined slot categories and introducing 502
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Thank you!

把数字世界带入每个人、每个家庭、
每个组织，构建万物互联的智能世界。
Bring digital to every person, home and organization
for a fully connected, intelligent world.

Copyright©2018 Huawei Technologies Co., Ltd.
All Rights Reserved.

The information in this document may contain
predictive statements including, without limitation,
statements regarding the future financial and
operating results, future product portfolio, new
technology, etc. There are a number of factors that
could cause actual results and developments to
differ materially from those expressed or implied in
the predictive statements. Therefore, such
information is provided for reference purpose only
and constitutes neither an offer nor an acceptance.
Huawei may change the information at any time
without notice.
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