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Background

» Neural network based deep learning methods obtain great succsss in almost
all NLP tasks.
ETHEMEHIREF I HEE/LFRBNLPIESHEEE TEXRKI.

» But in many real industrial applications, rule-based methods are still
unavoidable because:

BERZEIMNITWEREMAS, ETRANNGENARITATRKHN, BA:
> NNs are not interpretable, thus not reliable.
LR TTEMRRE, EmMArEH.
» NNs are not controlable. Users are not able to change the behaviour of NNs
according to their expertise.
WM ITEES . AP EREECHERER AN TMEMERITA.
» Rule-based systems have their own shortcomings:
ETRANNASZE B SRS :
> Low coverage. 7= &= %1k
> Low efficiency. #ITE0EE.
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Our work

» Our methods: 1175 %
> Integrate rules into neural networks. 1531 I El N\ 3822 45 .
> Convert rule-based systems to neural networks. 45} J1l| 2 4 45 #2481 42 0 4% 22 55
» Execute rules via neural networks. 1835 422 [ & S 170
» More specifically, we proposed methods to integrate the following three types
of rules into neural networks:
Bk, BIVMREARGE, BUAT=ZMEXANERN R HE M-
> large-scale dictionaries. A #1515,
» regular expressions. IEN|FiA .
> context-free rules. .= 3270 501,
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DyLex: Incorporating Dynamic Lexicons into BERT for Sequence Labeling



Background

* Lexicons are very important

Please open the IronMan

d’e"g Wm”@ IronMan may be an app, a device, or a video
7 7’
fail to which your smart assistant haven’t seen
Oy - “Wag,
- € “Bhe
Y

play Just a Little While Longer now on IronMan
play Just a Little While Longer' music?movie?
now on IronMan @ ambiguous a;dl;gn;

Your smart assistant can’t distinguish whether
,d‘f‘ &
‘ T R
o

Just a Little While Longer is a song name or a movie name
6"°m plete o
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Background

Previous method
Feature based

The Federal C: icatie ission b
for experimental license to test SG technology.

SLEBIRIE{EE R SR IEE A TR B SGBMANE

2-gram
3-gram
dgram BIEET RAKE

Sgram WUBEMAE BRKML

P

g

Figure 2: Example of feature vector construction. The char-
acter with the red shadow is the character x;. The character
segments with rounded rectangle are the words in the dictio-
nary .

Zhang, Qi, Xiaoyu Liu, and Jinlan Fu. "Neural networks incorporating
dictionaries for chinese word segmentation.” Thirty-Second AAAI
Conference on Artificial Intelligence. 2018,

Weakness

.

Some depends on word embedding

Lattice based

() Lattice model.

Zhang, Yue, and Jie Yang. "Chinese ner using lattice Istm." arXiv
preprint arXiv:1805.02023 (2018),

Ignore the category of words

Graph based

EEG LA

Figure

stem architecture

Ding, Ruixue, et al. "A neural multi-digraph model for Chinese
NER with gazetteers." Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics. 2019,

¢ No explicit disambiguation

NOAH'S
E ARKLADB
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DyLex: Incorporating Dynamic Lexicons into BERT for Sequence Labeling

4.1/14

OBnInBsIsOO

BERT
Encoder

Fusion

HEEEEN
|
SelfAttn Layer |

Bn: B-name Bs: B-song

In: I-name Is: T

-song

O BnIn O O
O O O Bs Is

T Selecting
O 0O 0 O
Bn In O O
O O Bs Is
O O O Bs

T Denoising

X2 2 X
coo®

coo¥

T Matching

0o O
0O o
(0]
(0]
(0]
(0]

[eXeoje)e)

[e}e)o)e)
[eXejele}

play Taylor Swift’s Sparks Fly for me

(a)

(b)

Figure 2: (a) The overall architecture of the proposed DyLex framework, it consists of two parts, namely BERT-
based sequence tagger and LexKg Extractor. The Extractor has three submodules: the Matching, the Denoising

and the Fusing. (b) A concrete example of lexicon matching and denoising.

2 HuAWEI

NOAH'S
RKLAB



DyLex: Incorporating Dynamic Lexicons into BERT for Sequence Labeling

» We propose a general framework for effectively introducing external lexical
knowledge into sequence labeling tasks.

» Our framework supports dynamic updates of lexicons to facilitate industrial
deployment.

» We use word-agnostic tag embeddings instead of pre-trained word embeddings.

» We devise a novel knowledge denoising module to make full use of
large-scale lexicons.

4.2/14 S HuawEl GRS R



Result

The CWS task

Primary Baselines

* BERT-based Sequence Tagger

* Glyce (for CWS)

* FLAT (for Chinese NER)

* HSCRF+softdict (for English NER)

Lexicon

* the lexical entry contains item and category

* lexicon used in experiment consistent with the
previous related work

Task  Item Category Tag

B: Begining of a word

CWS  words I: Continuation of a word

B-song: Begining of a song name

NER words  Song name " X
I-song: Continuation of a song name

5 1/14

B 5K R /2 1/ T/ 19684F
The Nanjing Yangtze River Bridge was completed in 1968.

255

24l

it

N the location dictionary

KIT KM
Model LEX PKU CITYU
Yang et al. (2017a) X 9630 9694
Ma et al. (2018) X 96.10 97.23
Huang et al. (2020a) X 96.60 97.60
BERT (Devlinet al., 2019) X 96.50  97.60
Glyce (Meng et al., 2019) v 9670 9790
DvLex v 9714 98.60

2 HuAWEI
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Result

Uimlperson bought 300 shares of [Acme Corp.grganization 1N [2006)Time.

The NER task

* Experiment both on Chinese and English NER
Chinese

5 2/14

Weibo, MSRA, Resume, OntoNotes

« used lexicon is the same is Li et al.(2020)
English
¢ Conll2003, OntoNotes5.0

used lexicon is the same as Liu et al.(2019a)

Methods LEX  Weibo MSRA  Resume  Ontonoles — AVG
BiLSTM-CRF (Huang 2t al., 2015) X 56.75 91.87 94.41 71.81 7871
TENER (Yan et al., 2019) X 58.39 93.0 95.25 7282 79.86
BERT (Devlinet al., 2019) X 68.20 94.95 95.53 80.14 84.70
LSTM-+ExSoftWord (Ma et al., 2020) v 56.02 9238 95.43 7240 79.05
Lattice-LSTM (Zhang and Yang, 2018) v 58.79 93.18 94.46 73.88 80.07
LR-CNN (Gui et al., 2019a) v 59.92 937 95.11 7445 80.79
FLAT+BERT+CRF (Liet al., 2020) v 68.55 96.09 95.86 81.82 85.58
DyLex v .12 96,49 95,99 8148 86.27

Table 2: F1 scores of different methods on Chinese NER dataset. AVG stands for the average of each row.

Methods LEX Conl12003 OntoNotes5.0 AVG
BIiLSTM-CRF (Huang et al., 2015) X 91.03 86.28 88.65
TENER (Yan et al., 2019) X 91.33 88.43 89.88
LSTM-CNNs (Chiu and Nichols, 2016) X 91.62 86.28 88.95
BERT (Devlin etal., 2019) X 92.40 89.13 90.76
CSE (Akbik et al., 2018) X 9272 89.71 91.40
SENNA (Collobert et al., 2011) v 89.56 - -

JERL (Luoet al., 2015) v 91.20 - -

ID-CNN (Strubell et al., 2017) v 90.54 86.84 88.69
GRN (Chen et 019a) v 91.44 87.67 89.55
HSCRF (Liu et al., 2019a) 4 92.75 89.94 91.34
LUKE (Yamada et al., 2020) v 94.30 - -

DyLex v 94.30 90.19 92.25

Table 3: F1 scores of different methods on English NER dataset. The setting is the same with Table2.Note that

LUKE i the entity i

during the p

ining phase.
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Result

The NLU task

Two scenarios

* Industrial dataset
To evaluate the method with large scale
lexicon, the size of lexicon is 16M

* Public dataset
used common nlu datasets, Snips and ATIS

5.3/14

xiaoyi result
MODELS TEST SINGLE MULTI MEDIA DISAMB
intent slot intent slot intent slot intent slot
BERT 96.67 9512 1383 5466 77.13 8122 9546 9288 -
DyLex 9743 9665 77.81  92.10 90.89 93.03 9596 95.09 97.74

Table 5: Performance on the industrial dataset (F1). The TEST set is divided into three parts, SINGLE, MULTI,
and MEDIA. The slot in SINGLE can only correspond to one tag in lexicon, and the one in MULTI can correspond
to multiple tag. The sentence in MEDIA has obvious indicator words, such as words like “play music”.

Models LEX Snips ATIS AVG
Intent  Slot  match,., Intent Slot  match,,,
Atten-joint (Liu and Lane, 2016) X 96.7 87.8 74.1 911 94.2 789 87.13
Slot-Gated (Goo et al., 2018) X 97.0 88.8 75.5 94.1 95.2 82.6 88.86
SF-ID (Eet al., 2019) X 97.4 922 80.5 971 95.8 86.7 91.71
Joint BERT (Chen et al., 2019b) X 98.6 97.0 92.8 975 96.1 88.2 95.03
HSCRF* (Liuetal., 2019a) v 98.7 97.6 93.1 977 96.0 88.4 95.25
DyLex v 99.8  99.1 98.1 98.2 9.7 88.5 96.52

Table 6: NLU performance on Snips and ATIS datasets. The metrics are intent classification accuracy, slot filling
F1. and sentence-level semantic frame accuracy (%). The results marked with * are reported from our recurrence.

2 HuAWEI
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DFA-NN: Integrating Regular Expressions with Neural Networks via DFA
Background



Background

» Regular Expressions (REs) are broadly used in various NLP scenarios 1F !l 5%
IERNEZFNLPIAET 52 A
» Named Entity Recognition (NER) 5  S2 /415 51
» Data Cleaning ##&5i%
> Sensitive content filtering &1/2% A 751 2
» Dialog Intent Identification and Slot Filling %1% = [£iH 5l F1E (2 AL
» Strength and Weakness /L6 =
» No need of large scale training data 7o 5 A& A TAr;£ 09714204
> Easy to read, write and edit for human experts 5 T32f#, J5{E A TIESMEX
> [—ﬁ!ard to balance between precision and recall 18 X 7 iR F1 73 [6] 5 7 B4R 1E
=7
> low coverage while not using wildcards 1~ FiEEL A 5 SHIREER

> too general while using wildcards too much (£ 1R LBl & ST T 52

> low efficiency when too many REs iF M| Z2iA 50 A 24 SEHUITIE KRR

6/14 Sz Huawer GRS Re
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Contribution of this work

>

>

A method to convert a set of REs to a Neural Network (namely DFA-NN)
R T —MA AR LUF—AENRENEUA—INRENLE (FRAFDFA-NN)
The DFA-NN is much more efficicent than a RE Recognizer
DFA-NNESBI TR E & T ENZRIER IR 725

The DFA-NN provides a sort of soft matching ability
DFA-NN$2f#t 7 KM ILEC A 2

The DFA-NN can be trained with both REs and training examples
DFA-NNRT LA [E] B £ R 1E W =0k SRR M R SRAE 50 A T 25

The DFA-NN performs better than the simple classifier NN, especially when
the training instances are few

DFA-NNTZEVIZ BRI RHR FRIT 47 T & L AINN 5T 25
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DFA-NN: Integrating REs with NNs via DFA



DFA-NN: Integrating REs with NNs via DFA

» Convert an RE or a set of REs into a Minimal DFA (MDFA).

BF—PHE—HENFRERFR A — PR/ BEEBRKESE N (MDFA).
» For each instance:

» We send the input sequence to the DFA, and get a DFA state for each token in
the sequence.
HMANFSIEZ|IDFAR, NTFFIIFEE—oken, FKi1EEI—1IDFARE.

> We can also assign a sequence classification (True/False) depending on
whether the final DFA state of the sequence is an end state. It can also be a
multi-class label if there are multiple REs.
IRIEHGFHDFARS R B A— MR ILKRT, BITEATLUSLEANFTI—MRE
(B/E). MREZNENRIER, BAILUERZ D ERE.

8 1/14 @'QHUAWEI §xgﬁ1/§u



DFA-NN: Integrating REs with NNs via DFA

I(start)

)(Other) B(ble)  H(VE) 3(ble)

RE:a (b|c)

a b c :> [”a", n-u' llblll ll-ll’ lchI] :> [1’2’3’4,510]

text symbol sequence DFA state sequence

8 2/14 @%HUAWEI ‘§?‘\§QHL/?D



DFA-NN: Integrating REs with NNs via DFA

» Then we train an BiLSTM-based classifier based on the training data with
token-level and instance-level labels.

RE A A X L Htoken £ Flinstance 2k #iric B I 2R 3 48 5K )l 2 —
FBILSTMA 4 22 .

» The sequences are fed to the BiLSTM and we obtain a hidden state vector for
each token.
?Fﬂ’@cﬁ\rhﬁl] XE|BILSTMH, FHAALLEFFIHE S MokenlE F— MR 7S |
ie

» Then we train a small multi-layer perceptron (MLP) to predict the DFA state for
each token using its hidden state vector.
REHRMNNG—N DML ERMANME (MLP) KiEE B Mokent R HIFRAR 7S
ERHEXTMAIDFART
(...To be continued 4%~ 777)

8 3/14 &1 /4 HUAWEI §;\I\gﬁ1/§u



DFA-NN: Integrating REs with NNs via DFA

» Then we train an BiLSTM-based classifier based on the training data with
token-level and instance-level labels.
PREFAE X L istokenZk Finstance R AR it B 23 HE K )1 2k —
FBILSTMA) 47> 235
(...Continued #% [ 77)

> We pool the obtained DFA states of all the tokens in the sequence to obtained
an instance-level DFA state vector.

FATHE TN 15 2 B9 Er BtokenBIDFAIRZS B T ith L 32 /E 58— instance
HIDFAIRZS B £ -

» Finally we train another MLP to predict the instance-level label according to its
instance-level state vector and all the token-level hidden state vectors.
BERNMNES—Z BRI, RiFinstancekBIDFAIRZS = Fitokenk
R ERIRSEE, KIUNE N sequencefIZERIFRIE

8 4/14 &1 4 HUAWEI \%;\I\gﬁn‘_ﬁu



DFA-NN: Integrating REs with NNs via DFA

RE: ~flight (rlumber|numbers) Output Label:intent_flight_no
1 6

S flight—@ @ ()
[SPACE] [SPACE]

OO

5@
®

lndex 0, , 4,
[0] [0l
0] [0 [C [0]
rumberiumbers(5,) onehot 3 B B b
© e I [0 [ ¥
5 0 o [ 1]
Input sentence:  flight [SPACE] numbers [SPACE] from... V‘?Z;‘:"J'ree‘s’e' o O o y [
> max pooling: u*

MDFA states: (50)(52) (59) (%)
features

NOAH'S
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Experiments and Results

We employ the widely used ATIS intent classifi-
cation dataset?. This dataset contains 4,978 training
samples and 893 test samples with 18 intent labels.
There are 54 manually written REs for intent classi-
fication obtained from Luo et al. (2018)3. We build
few-shot training sets by randomly selecting ¢ sam-
ples for each class from the full training set. The
models are trained on each training set respectively
and evaluated on the official test set.

9 1/14

_ _ _ q=5 q=10 ¢=20
Model ‘ 7=5 4=10.9=20° G300 w300 wi300
MLP-I¥ 63.72 73.46 8320 9423 9490 9571
MLP-0* 58.68 77.83 89.25 91.82 97.09 97.15
ATTN (woast) | 75.36 8544 88.80 92.05 96.98 97.76
FOL uetst) | 5622 6842 84.10 91.94 9675 97.42
NNSC (oury) 65.28 73.90 8689 94.06 9697 9820
INSTANCE ury | 8197 8499 91.04 9451 97.64 97.87
WORD oy | 80.17 86.67 90.25 94.62 97.20 98.32

Table 1: Comparisons with the other methods that com-
bine REs with NN without MDFA and the NN-based
Model (denoted as NNSC). * indicates the baseline hy-
brid models described in (Luo et al., 2018). The results

are reported in accuracy.

&2 HuAWEI



Experiments and Results

<

=X

S

>

Q

<

—

=

3 - REs

< — NNSC
“o INSTANCE
- WORD

20
LH>A561%9 DB\ B\I 0NN BARNEA0NADAD DN ADAD KRS 204N 25D 1D 3 51D 4345 4O K 1319 e RADDP K N N AN
\ 6 A0V OOV 1B\ Ay A9 ANAEALAN 4D IO N D A S RO EETSCORERE

q
Figure 3: Comparisons of the REs, NN-based model (denoted as NNSC) and the proposed hybrid models (denoted
as INSTANCE and WORD).
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Content

Lexicon-injected Semantic Parsing for Task-Oriented Dialog

Background



Rule-based engine for Dialog Systems

» Although deep learning has been great successful in NLP, rule-based dialog
engines are still broadly used in industries, because:
BAREZIJENLPHEG TEXRIT), BT FEEE EERET MR
ESIE, FEA:

> |tis hard to encode complex business logic within a NN.
ERAMEMERELME ZFal SZ B E R

> |t is hard to change the business logic given an existings NN.
e BMmEME Pl SZEIFEE

» A rule-based dialog engine has further advantages because its hierarchical
representation:

HATRABRRER, ETANANESIELTHAEZMS:
» Support multi-intent utterances.
X RHZEERIE.
» Support negative expressions.
XRHBERIE.

10_1/14 S HuAWEL NSRT R



Rule-based engine for Dialog Systems

» However, compared to NNs, rule-based dialog engines have some
disadvantages:
AT, MEXTTREMLE, ETHNPNIESIERFUTESE:
> Fragility. Possibly fail when the users change their expressions slightly.
fesstt. AP EEREZ AR TTEIRA .
> Low efficiency, especially when the rule-base is very large.
WERE, LEHIAMNEKEIEEAIRHE.

10_2/14 Sz Huawer GURSRTRe



Span-based Hierarchical Semantic Parsing for TOD

IN:GET_DIRECTION

directions, to, ~ SL:DESTINATION

IN:FIND EVENT Method Acc F1 Time
, seq2seq 78.24  90.78 8m
SL:0ORGANIZER ’s, SL:CATEGORY

‘ % | RNNG 80.63 92.61 1h16m

John., party, Stern-chart 80.66 93.03 25m

Stern-greedy  80.79  92.83 22m

T = {(0,5) : (IN:GET_DIRECTION), ours (no fo)  80.80 93.35 5m

(2,5) : (SL:DESTINATION, IN:FIND_EVENT), ours (+ fo) 8180 93.63 9m
(2,3) : (SL:0RGANIZER), Table 1: Th h labeled brack

able 1: e test exact matcl accuracy, labelel racket
(4,5) : (SL: CATEGORY), F1, and training time per epoch of different methods.
0,1):2, (0,2):2, (0,3):2, ...}

Figure 1: An example TOP tree and its mapping repre-
sentation 7'. (IN: = intent; SL: = slot)

Pasupat et al., Span-based Hierarchical Semantic Parsing for Task-Oriented Dialog, EMNLP2019

1.1/14 S HUAWEI FINSRNTR



Span-based Hierarchical Semantic Parsing for TOD

» This method outperformed existing methods, while have a high training and
inference speed as fast as seq2seq model.

XA E AR ERE T EFRIERE, FERfRAIRseq2seqiREYRAIIZRF]
IR

» However, we see there are still drawbasks as:

» There are still space to improve the accuracy.
RAERELHHFHEIRS.

> The performance will drop when the lexicon is updated.
HEEHRRSH R T,

Pasupat et al., Span-based Hierarchical Semantic Parsing for Task-Oriented Dialog, EMNLP2019

1.2/14 Sz Huawer GURSRTRe
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Our Method: Lexicon-injected Semantic Parsing for TOD

» Our method improves the model proposed by (Pasupat et al., 2019) in the
following ways:

A 1%+ (Pasupat et al., 2019) IR B 1T T LT o&idt:

» We improve the performance of the span-based parser by incorporating a
splitting feature into the span representation
FAESpanT P SIN T BT SHHE, MRS T Span-based D ESa014 B

» We propose a novel lexicon-injected method and a slot disambiguation method
to further improve the semantic parsing performance, to ensure the parser can
keep a high performance when updating the lexicon.

HAMRE T — B aY RS EN G AN HIR G, AT — BB X o
BIMERE, HARERNAEHEENSTSNMEEAS TR,

121114 Sz HuawEl YNGR RS



Our Method: Lexicon-injected Semantic Parsing for TOD

Tree representation

We define the representation of span (¢, j) as:

Tig = fij+1 — fim1

i
i

i i

i i

i |

i i

i S i We define a new span-

] an representation . Lo

i LY i splitting representation 7; j, that adds the boundary
' ! .

i i

i i

i i

i i

i i

i i

i i

representation at the splitting point to the parent:

Encoder
__________________________ Fig =Tij+ frr—1,5 (6)
4 where k* is the best splitting point dynamically
posi@ slot-category tag computed as follows, dividing parent span into two
T separate spans (¢, k — 1) and (k, j):

;

[ Slot Disambiguation Model }

utterance Lexicon

Model structure

k* = arg m’?x[s*(i, k—1)+ s*(k,j)]

Incorporate the splitting feature
into the span representation

R NOAH'S
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Our Method: Lexicon-injected Semantic Parsing for TOD

> For each word appears in a slot with the category tag f;, we
assign t; to the word in the lexicon. Thus each word may

have multiple tags. We train an embedding q; for each tag t; utterance
which is initialized randomly. — [|Hew 1\5 [rafti|[hesdingljcof[Padll's house|]
. . . \ N~ - — ;::/ﬁ//
> For those words which appear outside the slots, we define a H‘H’H Hﬂﬂ%ﬁ%ﬂ
special tag fp. b |
. . sm em] drl —
> We concatenate the category embeddings to the previous ﬂ'ﬂ’{ }E’}H
defined word representation: 4l
zi = [wi; pis gi] naa [Dac shouse\
> We define a new generalized word representation by I—]_m
replacing the word embedding with its tag embedding: ==
. ) _ o T 1. [CLS] How ls?ral’ﬂrhendmgm
= [wi; pi; @], ti=to L e LS‘H o d]]"[“:i;]“““‘“
. SLTYPE RELATION 2. low is traffic heading to
[q27 Di; QZ]v otherwise. SLDESTINATION | Dad s house [SL:TYPE_RELATION.le «P]lnau
SLOBSTINATION , [SLTYPERELATION.right] 's house [SEF]

» Thus we can make the model more informative of the
slot-categories rather the specific word, and ensure the
model performance will remain when we update the lexicons
with unseen entities in the training data.

Lexicon-injected Model Slot Disambiguation

12.3/14 S HUAWEI FONSRNTR



Content

Lexicon-injected Semantic Parsing for Task-Oriented Dialog

Experiments and Results



Experiments and Results

13/14

Method Ace F1
Non-lexicon-injected parser:

Pasupat 80.80 93.35
Pasupat-edge 81.80 93.63
Decoupled RoBERTa 84.52 -
Decoupled BART 87.10 -
Seq2SeqPtr (+BERT) 83.13 -
Seq2SeqPtr (+RoBERTa) 86.67 -
Ours (base)t 83.06 94.23
Ours (+Split)t 83.97 94.55
Ours (+RoBERTa) 85.77 95.24
Our lexicon-injected parser:

w/o Slot Disambiguationt 81.83 93.87
w/ Slot Disambiguation 85.63 96.13
w/ SD + GR¥ 86.80 96.34
w/ SD + GR + RoBERTa 87.62 96.60

Table 2: Comparison of complete match accuracy and
labeled bracket F1 of different methods on TOP test set.
SD, GR and t denote to slot disambiguation, generalized
representation and use BERT-base model.

Method Acc F1
Non-lexicon-injected parser:

Pasupat 7090 -
Ours (+Regex substitution) 69.94 -
Ours (+RoBERTa) 74.35 92.10
Seq2SeqPtr (+RoBERTa) 7491 9242
Using the original lexicon:

w/ Slot Disambiguationf 71.75 93.23
w/ SD + GR¥Y 7095 93.19
w/ SD + GR + RoBERTa 71.87 93.49
w/ SD + RoBERTa 72.78 93.73
Altering the lexicon:

w/ Slot Disambiguationt 84.80 95.92
w/ SD + GR+¥ 86.30 96.25
w/ SD + GR + RoBERTa 87.27 96.54

Table 3: Comparison of complete match accuracy and
labeled bracket F1 of different methods on the modified
TOP test set with introducing unseen slot values. SD,
GR and T denote to slot disambiguation, generalized
representation and using BERT-base respectively.

2 HUAWEI
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